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Abstract

The aim of this paper is to propose a numerical strategy for computing the solution of two-dimensional time-harmonic
acoustic multiple scattering problems at high-frequency. The scatterers are assumed to be circular, leading therefore to
semi-analytical representation formulae of the scattered field through the solution of a large linear system of equations.
Taking advantage of the special block Toeplitz structure of the matrix of the linear system, a fast iterative and precondi-
tioned numerical method yielding large memory savings is proposed. Several numerical experiments for general configu-
rations are presented to show the efficiency of the numerical method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple scattering problems find their origins in many applications related to different areas of applied sci-
ences: acoustics, electromagnetism, elasticity and water waves. For such problems, the scattered field appears
as the superposition of elementary scattered fields resulting from the interaction between the incident wave
and the scatterers on one hand, and between the scatterers on the other hand. A better understanding of such
problems requires a precise knowledge of the influence of the different physical and geometrical parameters of
the problem on these interactions. Due to the complexity of this problem, computing a numerical solution
requires a special care, especially in the case where the number of objects is large and/or for high frequencies.
For a recent and complete overview of these issues with extended bibliographical references, we refer the
reader to the textbook [17] by Martin.
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doi:10.1016/j.jcp.2007.09.030

* Corresponding author. Address: Institut National Polytechnique de Lorraine (INPL), Nancy Université, Ecole Nationale Supérieure
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In this paper, we investigate the two-dimensional Helmholtz equation for circular cylinders. Following Záv-
iska and next Row [24,18,17], a multipole expansion formulation of the solution can be obtained. Unlike the
case of one object where the Mie series solution expressed by the Fourier coefficients is explicitly obtained
through the inversion of a diagonal matrix, the case of multiple scattering is more complex and requires
the use of numerical methods. Indeed, it can be shown (see Section 2 or [17] for more details) that the scattered
field admits an expansion as a superposition of Fourier series. The set of Fourier coefficients is then solution of
a non-diagonal and dense complex linear system which can be extremely large for many scatterers at high-fre-
quency. The numerical solution of this system has been already obtained by some authors [15,16,20–23,25]
(see also [14] for scattering by spheres). However, this remains restricted to low-moderate wavenumbers. Alter-
native solutions using numerical methods based on Dirichlet-to-Neumann non-reflecting boundary conditions
have been recently developed by Grote and Kirsch [13]. This technique has the advantage of allowing general
shaped scatterers but, on the other hand, it requires to mesh the finite computational domain. In particular,
this leads to strong limitations (as in the single scattering problem) as the wavenumber increases since e.g.
small element sizes are required.

To the best of the authors’ knowledge, the only papers dealing with high frequencies for multiple scattering
problems are the ones by Bruno and co-authors [1,6,7,12] where scattering by three convex and non-convex
objects is analyzed for two- and three-dimensional problems. The authors consider an integral equation for-
mulation of the Dirichlet problem and derive a fast high-order method for computing the multiple scattered
field. This robust solver therefore allows to consider general shaped obstacles. While the technique is efficient
and robust, it is very technical and requires specific developments in the background of integral equations. The
present paper proposes to come back to the scattering problem by circular cylinders using the multipole
expansion and to develop a reliable and robust accurate numerical solution for large frequencies and many
scatterers.

The outline of the paper is the following. In Section 2, we recall some classical results on the problem of
multiple scattering by circular cylinders and on its resolution using multipole expansion formulation. In par-
ticular, we will see that the Fourier coefficients of the local scattered field solve an infinite linear system (see
(19)). Section 3 explains how to suitably truncate the above infinite dimensional system to get an accurate
numerical solution. Section 4 deals with the numerical resolution of the complex, dense and large size linear
system obtained. We take advantage of the special block Toeplitz structure of the linear system to reduce the
memory storage and accelerate the computation of the matrix. Next, we propose a fast iterative solution of the
linear system using a Krylov solver in conjunction with an original geometrical preconditioner. Several exam-
ples, corresponding to many geometrical configurations, are provided to understand the characteristics of the
algorithm for high wavenumbers and for a large number of scatterers. Finally, in Section 5, we conclude by
summing up our results and outlining some future directions of work.

2. Multiple scattering by M circular cylinders

Consider a homogeneous acoustic medium filling the whole space R2 and containing M disjoint scatterers
B1; . . . ;BM . We assume that each scatterer Bp, p = 1, . . .,M, is a bounded subdomain of R2 of boundary oBp.
We denote by X� ¼ [M

p¼1Bp the domain occupied by the obstacles. We consider the scattering problem of an
incident plane wave uincðrÞ ¼ eikb_r of direction b by X� (where the time dependence is assumed to be of the
form e�ixt and where the wavenumber k is real). In other words, we want to determine the scattered wave
u solving the exterior boundary value problem
Eð Þ

Duþ k2u ¼ 0 ðR2 n X�Þ;
Ku ¼ �Kuinc oX�ð Þ;

lim
jxj!þ1

jxj1=2 ru � x
jxj � iku

� �
¼ 0:

8>><>>:

To model sound-soft and sound-hard obstacles, the boundary operator K appearing in the above relations
denotes either the trace or the normal trace operator on oX�. A natural idea to solve numerically the multiple
scattering problem ðEÞ is to reduce it to a family of single scattering problems. By linearity, this can be
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achieved by introducing M fictitious scattered waves u1, . . .,uM, where each field up corresponds to the wave
reflected only by the scatterer p when it is illuminated by the incident wave and the scattered waves uq, for
q = 1, . . .,M with q 6¼ p. More precisely, we have the following result (see [4] for the proof).

Theorem 1. Let u be the solution of the multiple scattering problem ðEÞ. Then, the family of M coupled single
scattering problems for p = 1, . . .,M:
Epð Þ

Dup þ k2up ¼ 0 ðR2 n BpÞ;

Kup ¼ �K uinc þ
PM

q¼1;q 6¼p
uq

 !
oBp

� �
;

lim
jxj!þ1

jxj1=2 ru � x
jxj � iku

� �
¼ 0;

8>>>>>><>>>>>>:

admits a unique solution (u1, . . .,up). Furthermore, the following decomposition holds:
u ¼
XM

p¼1

up: ð1Þ
In this paper, we focus on the case where the scattering obstacles Bp are circular cylinders of radius ap cen-
tered at the points Op ¼ ðxp; ypÞ of a given orthonormal system of coordinates ðOx

�!
; Oy
�!Þ.

We set for all p = 1, . . .,M (see Fig. 1):
bp ¼ OOp
��!

; bp ¼ bp

�� ��; ap ¼ AngleðOx; bpÞ
and for all q = 1, . . .,M, with q 6¼ p:
bpq ¼ OqOp
���!

; bpq ¼ bpq

�� ��; apq ¼ AngleðOx; bpqÞ:
Any point M of the plane will be described by its cartesian coordinates (x,y) or by its polar coordinates:
r ¼ OM
��!

; r ¼ rj j; h ¼ AngleðOx; rÞ:

We will also use in the sequel the local polar coordinates of the point M in the orthonormal system of coor-
dinates associated to the scatterer p:
rp ¼ OpM
���!

; rp ¼ rp

�� ��; hp ¼ AngleðOx; rpÞ:
p

bp
p

pq

bpq

q

x

y

aq

Fig. 1. A view of two typical cylinders.
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Let us introduce for all m 2 Z the following cylindrical wavefunctions, which are particular solutions of Helm-
holtz equations for r > 0:
wmðrÞ ¼ H ð1Þm ðkrÞeimh;bwmðrÞ ¼ J mðkrÞeimh;

(
ð2Þ
where Jn is the nth order Bessel function and H ð1Þn is the nth order Hankel function of the first kind. Note that
for all m 2 Z, the function wm satisfies the outgoing Sommerfeld radiation condition. We also define for all
m 2 Z the local cylindrical wavefunctions associated with the scatterer p, for p = 1, . . .,M, by setting:
wp
mðrÞ ¼ wmðrpÞ ¼ H ð1Þm ðkrpÞeimhp ;bwp
mðrÞ ¼ bwmðrpÞ ¼ J mðkrpÞeimhp ;

(
8m 2 Z: ð3Þ
Since each field up is an outgoing solution of a single scattering problem outside a disk, it admits the following
modal decomposition in the local cylindrical outgoing wavefunctions:
upðrÞ ¼
X
m2Z

cp
mwp

mðrÞ 8p ¼ 1; . . . ;M ; 8rp > ap; ð4Þ
where the complex coefficients ðcp
mÞm2Z are determined by imposing the boundary condition on the boundary

of the scatterer p:
Kup ¼ �Kuinc �
XM

q¼1;q 6¼p

Kuq on oBp: ð5Þ
In order to explicit this equation, we have to express the incident field uinc and the fictitious scattered fields uq,
for q 6¼ p, in the local system of coordinates of the scatterer p. For the incident plane wave of direction
b = (cosb, sinb) we recall that (cf. [17, p. 125])
uincðrÞ ¼
X
m2Z

dp
m
bwp

mðrÞ; ð6Þ
where dp
m ¼ eikb�bp eimðp2�bÞ: Concerning the fields uq, we make use of the separation theorem (see for instance [17,

Theorem 2.12]).

Theorem 2. Let 1 6 p,q 6M, with p 6¼q. Then, we have the following relations:
wq
mðrÞ ¼

P
n2ZSmnðbpqÞbwp

nðrÞ for rp < bpq;P
n2Z
bS mnðbpqÞwp

nðrÞ for rp > bpq;

(
8m 2 Z; ð7Þ
where we have set
SmnðbpqÞ ¼ wm�nðbpqÞ; bS mnðbpqÞ ¼ bwm�nðbpqÞ: ð8Þ
The infinite matrices Sp;q ¼ ðSmnðbpqÞÞm;n2Z and bSp;q ¼ ðbSmnðbpqÞÞm;n2Z are called separation (or transfer)
matrices.

Using relations (1), (4), (5) and the first equation in (7), straightforward computations show that the
unknown Fourier coefficients solve the following equations:
cp
m þ

J mðkapÞ
H ð1Þm ðkapÞ

XM

q¼1;q6¼p

X
n2Z

SnmðbpqÞcq
n ¼ �

J mðkapÞ
H ð1Þm ðkapÞ

dp
m 8m 2 Z 8p ¼ 1; . . . ;M ð9Þ
in the sound-soft case and
cp
m þ

J 0mðkapÞ
H ð1Þ

0

m ðkapÞ

XM

q¼1;q6¼p

X
n2Z

SnmðbpqÞcq
n ¼ �

J 0mðkapÞ
H ð1Þ

0

m ðkapÞ
dp

m 8m 2 Z 8p ¼ 1; . . . ;M ð10Þ
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in the sound-hard case (note that H ð1Þn ðkapÞ and H ð1Þ0n ðkapÞ never vanish for real wavenumbers). The infinite lin-
ear systems (9) and (10) can be written in the more compact vector form
Cp þDp
XM

q¼1;q6¼p

Sp;qð ÞTCq ¼ Bp 8p ¼ 1; . . . ;M ; ð11Þ
where

� Cp ¼ ðcp
nÞn2Z is the infinite vector containing the coefficients of the cylindrical decomposition (4) of up,

� ðSp;qÞT denotes the transpose of the separation matrix Sp;q between the obstacles Bp and Bq defined by
Sp;q ¼ ðSp;q
mnÞm2Z;n2Z; Sp;q

mn ¼ wm�nðbpqÞ:
� Dp ¼ ðDp
mnÞmn2Z is the diagonal infinite matrix, with diagonal terms
Dp
m;m ¼

JnðkapÞ
H ð1Þn ðkapÞ

for sound-soft obstacles;

J 0nðkapÞ
H ð1Þ0n ðkapÞ

for sound-hard obstacles:

8<: ð12Þ
� Bp ¼ �Dpdp, where dp ¼ ðdp
mÞm2Z is the infinite vector containing the coefficients of the cylindrical decom-

position (6) of the incident wave.

The M infinite linear systems (11) can equivalently be written in the abstract form
AC ¼ B; ð13Þ

where
A ¼

I D1ðS1;2ÞT . . . D1ðS1;MÞT

D2ðS2;1ÞT I . . . D2ðS2;MÞT

..

. . .
.

DMðSM ;1ÞT DMðSM ;2ÞT . . . I

2666664

3777775; ð14Þ

C ¼

C1

C2

..

.

CM

266664
377775; B ¼

B1

B2

..

.

BM

266664
377775
and where I denotes the identity operator on ‘2ðCÞ.
Let us emphasize that many physical quantities of interest can be deduced from the solution of (13). The

scattered field u can be obtained in the neighborhood of Bp (namely, for rp < min16q6M
q6¼p

bpqÞ by the relation !

uðrÞ ¼

X
m2Z

cp
mwp

mðrÞ þ
X
m2Z

XM

q¼1;q6¼p

X
n2Z

SnmðbpqÞcq
n
bwp

mðrÞ: ð15Þ
Using rp ¼ r � bp cosðh� apÞ þOð1=rÞ, the scattering amplitude a(h) defined by
uðrÞ ¼ eikrffiffi
r
p aðhÞ þO

1

r

	 

as r! þ1
is obtained by
aðhÞ ¼ e�ip=4

ffiffiffiffiffi
2

pk

r Xp¼M

p¼1

e�ibpk cosðh�apÞ
X
n2Z

einðh�p
2Þcp

n

 !
: ð16Þ
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For the Dirichlet multiple scattering problem, one can be interested in computing the normal derivative ouðrÞ
orp

on
the boundary of the scatterer p. This can be achieved by taking the normal derivative of (15). Following [15],
let us notice that the resulting formula can be simplified (to eliminate the double sum) using (13) and the
Wronskian relation for Bessel functions. The final expression reads
onUp ¼ �onUinc þ 2i
pap

J�pCp; p ¼ 1; . . . ;M ; ð17Þ
where onUp (respectively onUinc) is the infinite dimensional vector containing the Fourier coefficients of the
normal derivative of the scattered (respectively incident) field on oBp and J�p is the infinite diagonal matrix
with diagonal terms 1=J 0mðkapÞ. A similar formula for the trace can be derived in the case of Neumann bound-
ary conditions. Note that Eq. (17) is particularly well adapted for the numerical computations since it only
involves diagonal matrices.
3. Finite dimensional approximation

Obviously, the infinite linear system (11) (or (13)) must be truncated to be solved numerically. In particular,
only a finite number of modes can be used to describe the solution up. Let 2Np + 1 be the corresponding num-
ber of modes used for the scatterer p, i.e. assume that we keep only the modes wp

m such that �Np 6 m 6 Np.
Note that we have chosen a possibly different number of modes for each scatterer, in order to take into
account geometrical configurations where the obstacles have different radii. With this notation, (11) should
be truncated to the finite system
Cp þDp
XM

q¼1;q6¼p

Sp;qð ÞTCq ¼ Bp 8p ¼ 1; . . . ;M ; ð18Þ
where

� Cp ¼ ðcp
nÞn¼�Np ;...;Np

is the finite vector containing approximations of the first 2Np + 1 modal coefficients of
the cylindrical decomposition (6) of up, that we still denote cp

n for the sake of clarity.
� Sp;q is the (2Np + 1) · (2Nq + 1) finite dimensional separation matrix taking into account only the interac-

tions between the first modes of the obstacles Bp and Bq:
Sp;q ¼ ðSp;q
mnÞ�Np6m6Np ;�Nq6n6Nq

; Sp;q
mn ¼ wm�nðbpqÞ:
� Dp ¼ ðDp
mnÞ�Np6m6Np ;�Nq6n6Nq

is the diagonal finite matrix, with diagonal terms
Dp
m;m ¼

JmðkapÞ
H ð1Þm ðkapÞ

for sound-soft obstacles;

J 0mðkapÞ
H ð1Þ0m ðkapÞ

for sound-hard obstacles:

8<:

� Bp ¼ �Dpdp, where dp ¼ ðdp

mÞ�Np6m6N p
is the finite vector containing the 2Np + 1 first coefficients of the

cylindrical decomposition (4) of the incident wave.

The M coupled finite dimensional systems (18) can equivalently be written as
AC ¼ B; ð19Þ

where A 2 CN ;N is the full complex square matrix of size N ¼

PM
p¼1ð2Np þ 1Þ defined by
A ¼

I 1 D1 S1;2
� �T

. . . D1 S1;M� �T

D2 S2;1
� �T

I 2 . . . D2 S2;M
� �T

..

. . .
.

DM SM ;1
� �T

DM SM ;2
� �T

. . . IM

26666664

37777775; ð20Þ
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where I p denotes the identity matrix of C2Npþ1 and
C ¼

C1

C2

..

.

CM

266664
377775; B ¼

B1

B2

..

.

BM

266664
377775
are to complex-valued vector fields from CN.
The number of modes Np to retain in the approximation must be fixed to get an accurate solution. On one

hand, Np must be large enough to capture both the propagating and grazing parts of the solution (typically,
Np P kap). On the other hand, taking too many modes for approximating the solution makes the matrix A ill-
conditioned. Therefore, a numerical stagnation occurs when using an iterative algorithm for solving (19) (see
Section 4.3.1). This phenomenon is due to the fact that high order spatial modes |m| correspond to the eva-
nescent part of the field and therefore, computing their Fourier coefficients is definitively out of reach using
an iterative solver (with a fixed tolerance). For our simulations, we will use the following empirical formula:
N p ¼ kap þ
1

2
ffiffiffi
2
p lnð2

ffiffiffi
2
p

pkape
�1Þ

	 
2
3

ðkapÞ1=3 þ 1

" #
; ð21Þ
where [x] denotes the integer part of a real number x, and e is the desired error bound on the Fourier coeffi-
cients. The above formula has been proposed in the literature in the contexts of single scattering [11] and mul-
tipole methods [8]. Nevertheless, according to our numerical results (see Section 4.3.1), it turns out that it can
also be successfully used in the framework of multiple scattering investigated in this paper.

Let us give here a formal derivation of the above formula in the case of simple scattering (see the proof
given in [11] for more details). First of all, the convergence of the Fourier series

P
m2Zcp

mH ð1Þm ðkapÞeimhp in
L2(0,2p) implies that for |m| large enough, we have
jcp
mj 6

1

jH ð1Þm ðkapÞj
:

Taking in the above relation: |m| = kap(1 + f), with f� 1, and using the asymptotics of Hankel functions for
large arguments and large orders, one obtains that
jcp
mj 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
2
p

pkap

q
2

exp �
ffiffiffi
2
p

kapf
3=2

� �
:

Therefore, we can ensure an error bound of e on the unknown Fourier coefficients by imposing the right-hand
side of the above relation to be less than e. This gives
f ¼ 1

2
ffiffiffi
2
p lnð2

ffiffiffi
2
p

pkape
�1Þ

	 
2
3

ðkapÞ�2=3
and thus an order of truncation Np = kap(1 + f) which is exactly formula (21).

4. Implementation and validation of a fast preconditioned iterative numerical method

We want to solve the linear system (19) for realistic complex configurations, including numerous obstacles
M and high frequencies kap. Therefore, according to (21), the number of modes 2Np + 1 needed to approxi-
mate the solution up with a reasonable precision must then be large. This implies that a huge memory storage
is a priori required and large computational times are needed to build the dense matrix A. Moreover, we are
led to solve a large scale complex-valued linear system with size N · N, with N ¼

PM
p¼1ð2N p þ 1Þ. Using a

direct linear solver would yield a prohibitive computational time, especially for high frequencies. Our solution
consists in developing a strategy based on an iterative solver leading to problems related to fast evaluations of
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Fig. 2. Regular line with M = Mx disks.
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dense matrix–vector products as well as convergence questions. We carefully analyze these delicate problems
in the present section after presenting the different geometrical test configurations.
4.1. Geometrical configurations

In the numerical computations, we consider three kinds of geometrical configurations:

� The single-row configuration: this structure is composed of Mx (= M) equally spaced obstacles aligned along
the x-axis, the distance between two successive scatterers being denotedbx = b12 (see Fig. 2). Moreover, the
row is centered at x = 0.
� The centered uniform square/rectangular lattice: we consider here a rectangular lattice composed from

M = Mx · My circular cylinders (the structure is called square lattice if Mx = My). For brevity, we restrict
our experiments to a rectangular lattice which is composed of My uniformly spaced single-rows with respect
to by ¼ b1ðMxþ1Þ, each row being composed from Mx equally spaced disks according to bx = b12 (see Fig. 3).
Moreover, the array is centered at the origin.
� The triangular lattice: this structure is composed of two parallel horizontal single-rows. The first one con-

tains Mx P 2 equally spaced disks and the second one Mx�1. The horizontal distance between two objects
is bx. Next, the first row is repeated vertically My times with a uniform distance by ¼ b1ð2MxÞ, while the sec-
ond one is reproduced My ± 1 times with again a separation distance by (see Fig. 4).

4.2. Storage

Although being full, the matrix A has a particular structure. Indeed, each one of its off-diagonal blocks is
obtained (see (20)) by multiplying the diagonal matrix Dp 2 C2Npþ1;2Npþ1 by the matrix ðSp;qÞT 2 C2Npþ1;2Nqþ1

which has a Toeplitz structure [9] since
Sp;q
mn ¼ wm�nðbpqÞ:
Consequently, using the notations from [9], the storage of ðSp;qÞT can be optimized using a compressed version
based on the root vector
rp;q ¼ ðSp;q
Nq;�Np; . . . ;Sp;q

�Nqþ1;�Np
;Sp;q
�Nq;�Np

; . . . ;Sp;q
�Nq;Np

ÞT: ð22Þ
To take advantage in our future algorithms of the special structure of each off-diagonal block of A, we store
both the Toeplitz matrix ðSp;qÞT (through the root-vector (22)) and the diagonal matrix Dp. According to our
notations, the compressed storage needs 2(2Np + Nq + 1) entries instead of the (2Np + 1)(2Nq + 2) complex
coefficients required for the full version. For A, this must be repeated for the M(M � 1) off-diagonal blocks
by summing over p and q. This results in a global storage equal to 3N(M�1) entries which must be compared
to the N2 � NM cost of the full storage. Furthermore, the computational time involved in the construction of
the global matrix is also reduced according to the memory storage. In the case where we have ap = a for any p,
the vector root version of A leads to a memory storage and a CPU time of the order of Oð6kaM 2Þ while it is
Oð4k2a2M2Þ for the full version. This is a crucial point for solving a multiple scattering problem for a large
wavenumber. To show the improvement induced by the compressed storage version using (22) over the full
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version, we represent on Fig. 5 the logarithm of the CPU time1 scaled by the computational memory require-
ment with respect to the wave number kap needed for building the global matrix A. We consider a single-row
configuration for M = 2, ap = 1, for p = 1, 2, and bx = 3. As expected, the CPU time for the compressed ver-
sion is linear according to kap while it is quadratic for the full version.

4.3. Iterative solution

Since we only have access now to the compressed Toeplitz format (22) of the matrix A, the linear system
(19) can only be solved through an iterative linear solver. We consider both the GMRES, possibly with a
restart parameter g (then denoted by GMRES(g)), and the BICGStab algorithms. The tolerance error of
the iterative solver is set to tol and the number of iterations to get this tolerance is denoted by niter.

Let us recall that the main CPU cost of the GMRES is due to one matrix–vector product (MVP) per iter-
ation. Moreover, a large amount of memory can be necessary to store the Krylov basis if too many iterations
are needed to reach the tolerance. We will see that it leads us to consider a restart parameter if the number of
obstacles is large and the frequency high. Two MVPs are required for each iteration of the BICGStab. This
finally gives the total cost which is related to each algorithm. We first study numerically the influence of the
order of truncation Np on the convergence of the iterative solver. In particular, this validates the choice of Np

given by formula (21). Next, we explain how to reduce the computational cost of a global MVP using a fast
algorithm for each Toeplitz subblock. We investigate numerically the dependence of the rate of convergence of
1 All the computations were performed on a Power Mac G4 1.67 GHz with 1 Go DDR SDRM. The algorithms are developed under
Matlab.



0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Np

N
um

be
r o

f i
te

ra
tio

ns

Fig. 6. Number of iterations with respect to Np.

0 100 200 300 400 500 600 700 800 900 1000
ka

C
PU

 ti
m

e

log10((CPU time/(3N))

log10(CPU time)/(N2

Fig. 5. Behaviour of the CPU time according to the wavenumber kap for building the matrix A in the case of the scattering by two circular
cylinders fixing Np by formula (21).

X. Antoine et al. / Journal of Computational Physics 227 (2008) 1754–1771 1763
the iterative solver with respect to the geometrical and physical parameters. Finally, we propose and study a
geometrically-based preconditioner.

From now on, we consider an angle of incidence b = 0 and we restrict the presentation to the Dirichlet case
(which appears to be harder to solve than the Neumann problem in terms of iterations).

4.3.1. Influence of the order of truncation Np on the convergence

As noticed in Section 3, the order of truncation Np must be fixed carefully e.g. through formula (21): Np

must be large enough to compute accurately the solution, but not too large to avoid the stagnation of the iter-
ative solver. To make this statement precise, let us consider a uniform square lattice with Mx = My = 2
(M = 4) and bx = by = 3 for a radius ap = 1, 1 6 p 6M, and k = 100. The linear system (19) is solved by
the GMRES with tol = 10�8. For a given value of tol and all along the paper, we fix e = tol in formula
(21). This gives here Np = 120 (represented by a red dot in Figs. 6 and 8). We report niter versus Np in
Fig. 6. One can observe three distinct zones. First, from Np = 1 to Np < kap + 2, niter increases. This means
that the computation of a correct solution requires more harmonics. This is obtained in the second stable zone
(for k ap + 2 6 Np 6 138). However, if we include too many harmonics (third zone), typically Np P 139 in our
example, then we obtain a break down of the GMRES as it can be remarked in Figs. 6–8. Indeed, stagnation
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occurs e.g. for Np = 150 while it does not for Np = 120. In particular, the relative error corresponding to the
stagnation at Np = 150 is equal to 10�2 while it is tol for Np = 120.

4.3.2. Fast MVPs for Toeplitz matrices

The direct computation of a MVP y ¼ Ax can be computed by blocks. Let us set: x = (x1,. . .,xM), with
xp 2 C2Npþ1, and y = (y1,. . .,yM), with yp 2 C2Npþ1. Then, we directly have from the structure of A given by
(20)
y‘ ¼ x‘ þDp P
16p 6¼‘6M

z‘;

z‘ ¼ ðS‘;pÞTxp

ð23Þ
with 1 6 ‘ 6M. The main cost of the above evaluation is linked to the computation of z‘ which is quadratic
according to (2Np + 1). Moreover, this must be repeated for each sub-block and each component of y‘. This is
very expensive when the frequency is large since the size of ðS‘;pÞT is (2N‘ + 1) · (2Np + 1). Another way of
computing a Toeplitz MVP for a matrix of size n · n is to use the fast algorithm explained in ([9, pp. 95–
96]) for MVPs involving Toeplitz matrices. The idea consists in building an associated circulant matrix using
the Toeplitz matrix and next applying an FFT-based MVP algorithm for circulant matrices. This algorithm is
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coded using Matlab FFT function. The resulting total cost in terms of real operations for computing y‘ is com-
posed from: one complex-valued Toeplitz MVP in 15n log2(n) + n operations (see [5, p. 193]), with
n = 2Np + 2N‘ + 2, summing up next on 1 6 p 6¼‘ 6M, the computation of the diagonal matrix Dp which is
6N‘ + 3, and finally adding x‘. Again, summing up on ‘ = 1, . . .,M gives the total cost. If ap = a, then, this
requires asymptotically Oð60ðM � 1Þ2kalog2ð4kaÞÞ operations compared to Oð4ðM � 1Þ2ka2Þ for a direct
MVP. An example is given in Fig. 9 showing the CPU time reduction with respect to ka (with a = ap,
1 6 p 6M) using the fast MVP algorithm compared to the direct algorithm in the single-row configuration
with M = 30 and bx = 3.

4.3.3. Numerical study of the convergence rate

Iterative solver: as already mentioned, the linear system (19) must be solved iteratively using either the
BICGStab or the GMRES [19]. From a large set of numerical simulations, the GMRES provides the fastest
convergence rate (see Fig. 10). However, a more important memory storage is required which can significantly
limit the possibility of prospecting high-frequencies for example. We present on Fig. 10 the behaviour in terms
of MVPs of the GMRES, BICGStab and GMRES(50) according to ka in the single-row configuration. We
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Fig. 10. Number of MVPs with respect to the wavenumber ka: single-row configuration with 75 obstacles and bx = 3. We use different
iterative solvers: GMRES, GMRES(50) and BiCGStab. The tolerance is tol = 10�10 (Dirichlet problem).
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can see that the GMRES breaks down at ka = 140 due to memory limitations. This is not the case of BICG-
Stab and GMRES(50) which keep on working. Moreover, it appears that the restarted GMRES generally
leads to similar or better convergence results than the BICGStab. For these reasons, we choose the
GMRES(50) in the sequel. Another way of improving the convergence rate consists in preconditioning the
linear system. This solution is analyzed in Section 4.3.4 where we build a geometrical preconditioner.

Single-row configuration: Fig. 10 shows the dependence of the number of MVPs according to the wavenum-
ber ka. As seen, for this complex configuration, the number of MVPs increases with ka. For a fixed wavenum-
ber, we also observe a dependence with respect to the number of obstacles M and the distance d between two
obstacles: d = bx � a. We remark in Fig. 11 that the number of MVPs increases linearly with M. Moreover,
the slope of the line is more important as d tends toward zero, meaning that we have two closer successive
scatterers. This is observed again on Fig. 12 where the number of MVPs is given according to d in logarithmic
scale for ka = 100 and M = 10. We see that the number of MVPs strongly decreases as the separation distance
d tends to infinity, i.e. d� k. This corresponds to a weaker coupling between the obstacles in the multiple scat-
tering phenomenon. For small values of d, d� k, the number of MVPs strongly increases, because the linear
system becomes ill-conditioned. Finally, we observe an intermediate resonance region for d � k where we have
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a few peaks in the number of MVPs. A physical interpretation of this phenomenon is the following. In this
regime, an approximate model consists in considering that two close circular scatterers, for ka� 1, behave
like two parallel planes separated by a distance d. Then resonances occur for such a configuration when
kd ¼ np 2 N�. This is confirmed for n = 1, 2, 3, 4, in Fig. 12, corresponding respectively to d = 3 · 10�2,
6 · 10�2, 1.2 · 10�1, 2.4 · 10�1. This generally creates a deterioration of the condition number at these fre-
quencies, due to small eigenvalues in the matrix of the system. A similar problem also arises in the context
of integral equations [10,11,2,3].

Rectangular and triangular lattice configurations: we now analyze the rectangular lattice configuration. A
first test-case is given in Fig. 13. We consider a rectangular lattice with Mx = 8 and increase the size of layers
according to My = 2, 4, 8. We fix bx = 8 and by = 13. The number of MVPs required by the GMRES(50) is
represented as a function of ka. We observe a stabilization with the frequency but the number of MVPs is
larger with My, and thus, with M. This is consistent with the previous observations in the single-row case. This
situation is, in some sense, not extreme because the distance between the obstacles is sufficiently large.

A more difficult problem is considered in Fig. 14 where we represent the number of GMRES(50) iterations
of an 5 · My lattice, for different values of My, according to ka (for bx = by = 3). We observe that the number
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of MVPs is again slightly dependent of ka but strongly varies with the number of layers, characterized by My.
Moreover, some peaks appear at some frequencies, and in particular at ka � 20.

This is more clearly visible in Fig. 15 where we increase the lattice size according to M ¼ M2
x at ka = 50. We

notice that the number of MVPs increases strongly with Mx. In particular, on this example, it can be shown
that, on the first values, the number of MVPs behaves like 3M3.3 and not quadratically with M. Another way
of considering particular frequencies where peaks occur consists in modifying d. Some numerical computa-
tions, not reported here, confirm this property.

Concerning the triangular lattice, similar conclusions can be drawn. However, it appears that this situation
is less dramatic in terms of MVPs compared to the rectangular lattice case.

4.3.4. A geometrically-based preconditioner

Since many iterations may be necessary in some situations, one way to improve the rate of convergence is to
precondition the linear system. In our context, wa cannot directly apply an algebraic strategy like the incom-
plete LU or SPAI preconditioners [19,9] which would require to reconstruct the full version of the matrix A.
An alternative direction is to build a geometrically-based preconditioner. We propose here a simple procedure
into two steps:

First, let us introduce the notation: A ¼ I þ F , where I ¼ diagððI jÞ16j6MÞ is the identity diagonal block of
A and F ¼ A� I is its complement off-diagonal part. Using the first-order approximation of the Neumann
series of A�1 gives
A�1 � I � F ¼ P: ð24Þ

In fact, there is no reason to assume that F satisfies qðFÞ < 1, where qðFÞ stands for the spectral radius of F .
However, relation (24) must be viewed as a formal way of building an approximation of the inverse of A and
so has also a subjacent limitation range. It could be possible to choose more terms in the approximation. How-
ever, extensive numerical computations show that this is not a good strategy. It can even lead to the divergence
of the method.

Since P is still a matrix taking all the interactions between the obstacles, it is interesting to reduce its appli-
cation cost by considering only the closest interactions. This can be done through a second approximation by
introducing a parameter d > 0 representing a maximal coupling interaction distance. Then, the preconditioner,
denoted by Pd , only considers the interactions between obstacles with indices 1 6 p,q 6M satisfying: bpq < d.
We must notice that the construction of Pd is implicit from A and does not require any extra cost. From inten-
sive numerical experiments, it appears that d = bx is an optimal choice for the single-row configuration while
d = max(bx,by) is the best choice for both the regular rectangular and triangular lattices. Taking a smaller or
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larger value yields a slower convergence or sometimes divergence. With this choice, the application of the pre-
conditioner requires a negligible additional cost compared to the unpreconditioned version of the solver.

To show the improvement induced by the proposed preconditioner, we present in Fig. 16 the number of
MVPs for a single-row configuration with M = 75 obstacles. We observe the improvement in terms of conver-
gence rate if we compare these results to the ones obtained in Fig. 10. The preconditioner always improves the
convergence even for very close scatterers. The situation is more delicate when considering the rectangular or
triangular lattices. We report in Fig. 13 the results obtained for different layers My = 2, 4, 8, setting Mx = 8.
The distance between the obstacles is bx = 8 and by = 13 (and so d = 13). We see an interesting gain in terms of
reduction of iterations. However, it appears that for situations where the scatterers are close
(bx�2a � by�2a 6 a = min{ap}16p6M), the preconditioner is not efficient and can even lead to a deterioration
of the convergence. This means that, for this kind of configuration, more efforts must be done for building a
suitable preconditioner.

We conclude this Section by analyzing the performance of our numerical method for an unstructured geo-
metrical configuration. We consider 60 unit circular cylinders (see Fig. 17) which are supposed to be distant
enough. More precisely, we assume that bmin: = inf16p<q6Mbpq P 3.
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Fig. 17. The considered unstructured configuration.
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Fig. 18 shows the convergence rate of our algorithm without preconditioner and with the preconditioner Pd

for d = 1.5bmin. Once again, we note a faster convergence for the preconditioned algorithm.

5. Conclusion and future work

In this paper, we investigated the numerical simulation of high frequency multiple scattering by circular
cylinders. The main difficulty that arises in this context is due to the fact that the complex dense linear system
to be solved is very large and ill-conditioned. This is in particular true when the number of scatterers is large
and/or for high frequencies. Taking advantage of the particular block Toeplitz structure of the matrix of the
linear system, we proposed an adapted storage of the system and an iterative algorithm of resolution, based on
a fast MVP computation. We realized a thorough numerical study of the convergence rate with respect to dif-
ferent geometrical parameters of the problem (the reduced wavenumber, the distance between the scatterers,
the number of scatterers). Finally, we proposed and tested the efficiency of a geometrically-based precondi-
tioner, obtained by taking into account close interactions.

Considering the results obtained in this paper, we plan in the future to tackle the following questions:

� Series truncation: the heuristic formulae (21) defining the number of harmonics to be taken into account to
obtain an accurate approximation needs to be proved rigorously.
� Preconditioner: the efficiency of the preconditioner we proposed seems from our numerical experiments to

be limited in some situations (very close scatterers for instance). This is due to the fact that the interactions
become stronger in this case.
� Extensions: a natural continuation of our work is to investigate other scatterers with simple shapes, the

three-dimensional Helmholtz equation and Maxwell’s equations.
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